
Heredity

REVIEW

Molecular evolution and the latitudinal biodiversity gradient

alinal ali-i-vali e i i va- i.v. ie ali Keywords: Ma 1

INTRODUCTION

A i a ife i, the h e, fa e ab dat a d e a ied ithi the t p ic tha i a. the p at f the g be, a d a g eat be fpec ia g p a e f d the e hich e e e te d i t te p e ate egi '

(1, ..., 2004).

Speciation

 (, 1974; , 2000). (, 1974; , 2000). (, 1974; , 2000; , 2000). (, 1974; , 2000; , 2

Extinction

 $(J_{a} \leftrightarrow et a_{a}, 2006; e_{a} \leftrightarrow et a_{a}, 2006; e_{a} \leftrightarrow et a_{a}, 2007; e_{a} \leftrightarrow et a_{a}, 2008).$

Immigration
مر معلمه مع المع المع المع المع المع المع المع ا
and the second second and the second
ب الم الم المحق التي يد المحق المحتر المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم

Metabolic rate variation driving differential rates of molecular evolution

evolution

میکن به طرف هریک می بیشود به می باد می ب میکن به می باد می با می می باد می باد می باد می می می می می می باد می

- a ser ton top top top to the serve to the server
- $3 = \frac{1}{2} + \frac{1}{2} +$ بهمه المرد مهم بدر محمقة و منه المه في المع
- .3(,,), 09.67.1(20);1.41,

B, $\begin{bmatrix} 1 & 5 \\ 1 & 5 \\ 2 & 7 \\ 1 & 6 \\ 2 & 7 \\ 1 & 6 \\ 1 & 7 \\ 1 & 6 \\ 1 & 7 \\$